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Abstract 
A geometrical description of Oersted-Amp6re's law ~ Hds = (4~/c)I can be given in 
terms of an appropriate topological manifold. More precisely: It will be shown that 
Oersted-Amp6re's law can be related to the topological invariant Hi(S1), i.e. de Rham's 
first cohomology group on the differentiable manifold 

S 1 = ((x,y) s ~2: x 2 +y2 = 1} 

1. Introduction 
A purely geometrical description o f  certain aspects o f  classical electro- 

dynamics has already been put  forward by Misner & Wheeler (1957). 
These authors have been led to propose that, within a suitable topological 
f ramework,  i.e. de Rham ' s  cohomology  theory, unquantised (continuously 
variable) charge receives a natural  interpretation in terms of  source-free 
electromagnetic fields that  are everywhere subject to Maxwell 's equations 
for  free space. That  is, charge can be characterised in terms of  lines o f  force 
which are t rapped in a multiply connected topological space M. This charge 
model  can be summarised as follows: Let 

co=-(H, dx').dx~ + El dxZ dx3 + E2dxa dx1+ E3dxl dx 2 (1.1) 

(where {E = (Ei), H = (H~)} denotes the electromagnetic field) be a closed 
2-form on M 4. I f  c 2 is a closed surface in the x ~ = const, hyperplane of  the 
space-time M*, charge is defined by de Rham' s  period 

/c f  co = f *E~jdx' dxJ = 4~re (1.2) 

where ~El = *E23, /E2 = *Eal, /Ea = *E~2. This equation can be given a 
straight-forward generalisation to an empty curved space time m 4, 

which may serve as a model  for charge, provided its second Betti-number 
be f12 ~> 1 and 

co ~ P ( M  4) = (co ~ F2: de) = 0) (1.3) 
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(vector space of closed 2-forms, d denotes the exterior derivative). The 
form (1.1) therefore provides a charge reinterpretation in terms of Maxwell's 
equations 

dco= 0 (1.4) 

which comprises the relevant equation dive = 0. 
In this paper we are concerned with the problem of defining another 

type of field which is derived from geometry. We examine its properties by 
referring to the case of electromagnetism as exhibited in Misner & Wheeler 
(1957). We therefore wish to express first the classical Maxwell field F,~ 
as a field derived from the properties of a curved empty multiply connected 
topological space M 4, such that the flux (1.2) through the 'holes' of this 
topology remains invariant. Otherwise stated, this amounts to re-expressing 
the field (1.1) in a purely geometrical form such that it entails the existence 
of the constant of motion which represents the charge e. This can be done 
as follows: 

Define this topological Maxwell field by means of the pairing 

(co, e,2), where co = ~ Fur dx ~. dx v ~ ~ Z(M4) 
and 

e, z ~ d z ( M  4) = (e: Oe = 0) (1.5) 

the group of 2-cycles on M 4. ~: linear boundary operator (i = 1.../72 
denotes the second Betti number). 

Clearly the field (1.5) is characterised by means of the topological 
invariants H2(M *) and H2(M4), the homology and cohomology groups 
of M * respectively (von Westenholz, 1972, and preprint). In such a model 
it turns out that the charge e accounts for the physical interpretation of 
these topological invariants. More precisely, there exists a bilinear mapping 

Hz • H2.-.~ R 

f co = 4zce (1.6) (co, C) -->. 

C 

which yields the required interpretation. 

Remark 1 : By virtue of de Rham's first theorem, the bilinear mapping 
(1.6) is non-degenerate and therefore establishes a duality relationship 
between H 2 and//2.  

Remark 2: The homotopy groups Hk(Mn),  k =  1, 2. . .  represent 
topological invariants as well and therefore can provide additional 
geometric conditions for fields which are described in terms of some 
geometry Mn. A conservative force field, F =-grad~0 (co = ~ Fidx~= 
-d~o), for instance, may be characterised in terms of the fundamental 
group I~1 (M") and thus presents an interesting problem in this respect 
(yon Westenholz, 1972). 

The aim of this paper is to express Oersted-Amp~re's law in terms of 
some appropriate topological model, i.e. some empty curved space. 
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2. Oersted-Ampere's Law as Property of Some Curved Empty Space 

Steady-state magnetic phenomena are characterised by the basic law 
(2.1). That is, consider an infinitely long straight current-carrying wire 
( ( x , y , z ) :  X 2 @y2= a 2, z unrestricted). The lines of magnetic field are 
concentric circles c ~ around this wire and Oersted-Amp&e's law can be 
written in the form 

  =ffrot. 
C] L C 2 

I = fS i. df  denotes the total current (i: current density). The value of this 
line-integral is independent of the choice of the circle c ~ and is given outside 
the wire (where li]= 0), by 

2/  
H = - -  (2.2) 

er 

(where r denotes the radius of c 1, r > a). The source-free basic differential 
law of magnetostatics, 

rot H = 0 (2.3) 
yields 

--2I y 2I x 
Hx= c x z + y2' H , -  e x z + y2' H z = 0  (2.4) 

With regard to the law inside the wire, refer to Remark 9 below. 
Now introduce the 1-form 

= 2 I [ - y . d x  x.dy ] 
a) c [x 2 + y2 + x ~ J  a F'(R2 - {0})'~ (2.5) 

which is readily checked to be closed on R 2 -  {0}. The form (2.5) stands 
for the magnetic field (2.2) or (2.4), more precisely: 

co: = H.ds  (2.6) 

where ds = (dx, dy). For later convenience we call (2.5) thephysieal Oersted- 
Amp6re field, contrary to the geometrical Oersted-Amp6re field (equation 
(2.12)) which is of the type (1.5). Consequently, equation (2.3) reads: 

dco = 0 (2.7) 

The corresponding basic law with source i is given by 

de5= 4~ ( -~-)  (2.8) c ~' 7 ~ F2(M) rot H = 4 i 

? It is immaterial to consider the domain ~2 _ {0} instead of ~2 _ D, (D, denotes the 
disk of radius 0 < r < a), since these spaces are topologically equivalent (refer to our 
subsequent Remark 9). (We have dropped the z-direction along the axis of the wire 
since the physical space of interest is the plane minus a disk.) 
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Now we can assert 

Lemma 1: Let co be given by formula (2.5), then the following 
statements are equivalent: 

(a) The de Rham periods Sol co depend only upon the homology 
class {c} s Hl(~2\{0}) (HI(R2\{0}) denotes the first homology 
group on N2t{0}). 

(b) Oersted-Amp&e's law (2.1) is independent of the choice of the 
line of magnetic field. 

Proof: The lines of magnetic field are cycles on ~2\{0}, which are all 
homologous to each other, as seenin the adjacent Fig. 1. In fact, statement (a) 
means: 

Ci 1 ~ C j  1 ~ j 

Oc:12j ell_c jl r r 
(definition of homologous cycles). 

Figure 1. 

Since by Stoke's theorem: I0c co = f de)= 0 for the closed form (2.5), 
one obtains 

4re/= C c o C  5 = ~ f c o = ' " = f c o ~ , '  (2.9) 

which is just formula (2.1). Conversely, all lines of magnetic field are 
elements of the same homology class {d} e HI(R2\{0}), thus obviously 
statement (a) holds. 

A mathematical model which accounts for the physical law (2.2) or (2.4), 
respectively, is provided by the differentiable manifold 

s*  = {(x, y) e U~/x ~ + y~ =1} 

which is related to the physical configuration space N3 by means of any 
smooth map 

~9:S* c •2 _+ Ra (2.10) 

Then the induced mapping 

~,,:; 1(~2\{0}) _ ~ ;  ,(s 1) (2.11) 

2Ic[-y.dx+ x.dy] co = -~-~-y~ ] --> c5 =f (0 ) .  dO 
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denotes the pull-back map on the closed differential forms 

#1 = (o~ ~ F1/do~ = 0, d: F 1 --> F 2} 

Consequently, define a topological Oersted-Amp~re field by means of 
the pairing 

((5, 5,a); ~p* c~ = (5 ~/)~(S~), 5~1~C1($1), i =  1 ,2 . . .  (2.12) 

which constitutes a geometrical version of the physical Oersted-Ampbre 
field (2.5). 

Remark 3: Definition (2.12) is compatible with Lemma 1 and formula 
(2.9) by virtue of the definition 

f (5 = f ~*o) %f f o~ (2.13) 

$ ,  is the modnl homomorphism, which is induced by the map (2.10) and 
which maps cycles on S 1 into cycles on R2/{0} according to 

~ ,  : d l ( S  1) --~ all(N2\{0)) (2.14) 

in connection with (2.12) it must be stressed that the first homology group 
of S a is given by 

H~(S 1) = (~(S 1) = 7/ (2.15) 

(group of integers), that is: H~(S ~)={.. .-2d,-cl,0,c~.. .} where nct 
winds n times around S ~. Therefore no two cycles of S 1 are homologous 
to each other. 

Remark 4: The first Betti number of R 2 - {0} is fl~ = 1, and the closed 
1-form ~ = 2I/c(x. dy - y .  dx)/r 2 is the only independent one. 

A topological model for Oersted-Amp6re's law can now be exhibited 
in terms of the following 

Theorem: Oersted-Ampbre's law can be expressed in terms of 
de Rham's first cohomology group H~(S ~) on S ~. 

Before starting the proof, we proceed to the following analysis. 

(1) Suppose the vanishing of de Rham's period (2.9): f~ o) = 0, rico = 0 
then 

oJ = -dgm (2.16) 

i.e. co is exact. That is, one is faced with the physical situation that 
ro tH = 0 permits the expression of the vector H as gradient of a 
magnetic scalar potential rp,,: 

H = -grad  cp~ (2.17) 
29 
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which is equivalent to (2.16). The region of  interest is characterised 
by the following 

Cu rrent-_carrying_wire 

Figure 2 Figure 3 

In  the case of  Fig. 2 we have 

f~=fHds:O 
c l  

(2) The physical situation of  formulae  (2.1) and (2.9) is displayed in 
Fig. 3 and we have ~cl co ~ 0; co # -dcp , ,  which invalidates (2.17), 
i.e. co is not  exact any more . t  This lack of  exactness of  co on R z - {0} 
can be remedied, however,  through the following 

Lemma 2: The 1-form 

& - a . d O ,  a e • ,  a5 = r (2.18) 

is exact on S 1. 

Remark  5: Since r  maps  exact forms into exact forms,  we shall use, 
by abuse of  language, the same nota t ion  for  d~o,, on both  spaces S a and 
R2/{0}. 

The p r o o f  of  L e m m a  2 is based upon  

Lemma 3 : A 1-form (o" ~ F I ( S  ~) is exact if  and only if its de R h a m  
period vanishes: 

f &' = 0 (2.19) 

Proof:  Condit ion (2.19) is necessary. In  fact, let r~' ~ - f  (0)dO, f (0 + 2azn) 
= f ( 0 )  for  every integer n e 7/. &' is exact, i.e. oh' e dF ~ i f  and only if there 
exists a periodic funct ion g such that  dg =f (O)dO.  Then 

2zt 

( 
) 5  d o  = g ( 2 ~ )  - g(O) = o = J c5' 

0 S 1 

The sufficiency of  (2.19) is obvious. Set 

g(O) = t f (O ' )  dO' m o d  2~ 

0 

t The form co = 2I/e(x. dy - y. dx)/r 2 = 2I/r d[arc tg(y/x)] is not exact, i.e. arc tg(y/x)r 
F~ since arc tg(y/x) is not continuous on cycles c I E d1(~2\{0}). 
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d-d~ = f ( 8 )  => dg = go" 

P r o o f  o f  L e m m a  2: Let 

a=~-~n 

2g 

f a0=  f go- aaO = o (2.20) 
0 S 1 

therefore go - ado  is exact, which achieves the proof. 
Since any 1-form on S t is closed, Lemma 2 states that every 1-form on 

S t differs from a real multiple of dO by an exact form, that is go ~- a. dO - d~o. 
We therefore set 

That is, if 

got = al dO - dqh 

(o2 = a2 dO - d~o2 

(5 - a .  dO = - d o  (2.21) 

got - goz = (at - a2) dO - (dqh - do;) 

i.e. got * (~2 (' ,9' means that got and (52 are not homologous to each other 
since, by (2.20), dO is not exact). 

L e m m a  4: Let &~ and &j be representatives of any two cohomology 
classes of H t ( S  1), then 

got = 2t~. go~ for some 2tj # 1 (2.22) 

Conversely, (2.22) entails go~ ~ goj. 

R e m a r k  6: A system of representatives of 

H ~ ( S  t ) = I ~ t / d f  ~ = {dF ~ at dO + d F  ~ a2 dO + dF  ~ . . . .  } 

will be designated by the isomorphic set {0, at dO, aa dO...}. 

Proo f :  Let &t = a~dO and &j =ajdO, ai and aj ~ ~ be representatives of 
different cohomology classes. This yields 

got = 2tj goj where 2i~ = at 
aj 

Conversely, let 

got = ~-tj goj 2tj r 1 => goj - got - -(1 - 2~j) got r d F  ~ 

therefore got "~ goJ. 
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Physical Interpretation of Lemma 4 

o9, ~ H(r,) = ert2I H(rj) = ~ H(r,) = 2,j H(rt) (2.22') 

21 coj_~ H(rj) = - -  
crj 

That  is, upon  the identification at = r~ and aj = rj the last formula corre- 
sponds to (2.22). 

This physical interpretat ion can be seen to be consistent with Oersted-  
Amp6re's  law since the following holds. 

Corollary. The non-cohomologous  forms oSj and cSt = 2 t /h j  on S 1 
satisfy the condit ion 

f i~ or = f N1 - 4hi 
c 

(for some ct and Yj on S 1) (2.23) 

and using (2.22) one has 

f c St = 2t~ 

4nlc = f cSt 
~t 

f (S j= f (5j= f csj 
~j l l j ~  J Ej 

where ?j: = 2tj ~i (with the definition J'c co = ~ al J',, ~ where c = ~ at ot, 
th = {9: s~ c R m -+ M"} denotes a general simplex (s~: Euclidean simplex). 

Remark 7: The above-mentioned interpretat ion makes use o f  the 
linearity o f  ~*:  

cot = 2tj % ~ ~St = 4'* oh = ~*(2tj %)  = 2~j ~,* % = 2tj ~5i 

Remark 8: I f  2 e Z, Yj is a cycle which satisfies VYt: Yt "~ ?j, since 
HI(S 1) ~ Z. I f 2  ~ R, 2 r Z, gj is a chain o f S  a and the expression 

f (Sj 
Ej 

is no de Rham period any longer. 

Remark 9: Oersted-Ampgre 's  law is also valid inside the wire o f  radius 
r > 0 (cf. Fig. 4). 

El #j 

i.e. Oersted-Amp~re 's  law. 

Statement (2.23) must  hold in any event. It accounts for  the correct choice 
of  the topological model,  since (2.22) corresponds to (2.22'). In fact:  
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~ [ V [  = C 2 

Figure 4. 

f =f aco=4-  f , (2.24) 
C 1 0C 2 C 2 C 2 

where c 1 ~ 0, i.e. c 1 is homotopic to 0, i.e. c 1 E ]~l  (M) (Poincar6 group 
of M) and ~ l  ( M ) = 0 .  The basic law is (2.8): d(5=(47r/c)7, where 
), E F2(M) represents the current density i and ~ is obviously not closed 
any longer. 

3. Discussion 

Since 
H I ( S  1) = F X/dF~ 1) ~ {a. dO: a e R} (3.1) 

the interpretation of Oersted-Amp~re's law in terms of  elements of Hi(S1)  
is related to the following two cases: 

(1) (5 = - d ( o  m (H =-grad(0,~) (Fig. 2), is associated with the space of  
exact 1-forms on S 1, i.e. 

aro(s 1) = {d~0: e ~ c ~ ( s  1, R)) 

that is, the identity element of Hi(S1) .  This case corresponds to 
a = 0 .  

(2) a r 0, consequently co ~ dF~ (Fig. 3). That is co r -dq0 m and 
Oersted-Ampbre's law must be interpreted in terms of elements 
other than the identity element of H I(S 1). 

The cohomology and homology groups H I ( S  1) and HI(S  1) are topologi- 
cal invariants. Their physical interpretation is given in terms of the Ampbre 
current I which is related to these invariants by means of the bilinear map 

H i  x Hi  -+ R 

f (5= f co= i (3.2) 
v 
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